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This work reports the first part of a series of numerical simulations carried out in order 
to improve knowledge of the forces acting on a sphere embedded in accelerated flows 
at finite Reynolds number, Re. Among these forces added mass and history effects are 
particularly important in order to determine accurately particle and bubble trajectories 
in real flows. To compute these hydrodynamic forces and more generally to study 
spatially or temporally accelerated flows around a sphere, the full Navier-Stokes 
equations expressed in velocity-pressure variables are solved by using a finite-volume 
approach. Computations are carried out over the range 0.1 < Re < 300 for flows 
around both a rigid sphere and an inviscid spherical bubble, and a systematic 
comparison of the flows around these two kinds of bodies is presented. 

Steady uniform flow is first considered in order to test the accuracy of the 
simulations and to serve as a reference case for comparing with accelerated situations. 
Axisymmetric straining flow which constitutes the simplest spatially accelerated flow in 
which a sphere can be embedded is then studied. It is shown that owing to the viscous 
boundary condition on the body as well as to vorticity transport properties, the 
presence of the strain modifies deeply the distribution of vorticity around the sphere. 
This modification has spectacular consequences in the case of a rigid sphere because it 
influences strongly the conditions under which separation occurs as well as the 
characteristics of the separated region. Another very original feature of the 
axisymmetric straining flow lies in the vortex-stretching mechanism existing in this 
situation. In a converging flow this mechanism acts to reduce vorticity in the wake of 
the sphere. In contrast when the flow is divergent, vorticity produced at the surface of 
the sphere tends to grow indefinitely as it is transported downstream. It is shown that 
in the case where such a diverging flow extends to infinity a Kelvin-Helmholtz 
instability may occur in the wake. 

Computations of the hydrodynamic force show that the effects of the strain increase 
rapidly with the Reynolds number. At high Reynolds numbers the total drag is 
dramatically modified and the evaluation of the pressure contribution shows that the 
sphere undergoes an added mass force whose coefficient remains the same as in inviscid 
flow or in creeping flow, i.e. C, = f, whatever the Reynolds number. Changes found 
in vorticity distribution around the rigid sphere also affect the viscous drag, which is 
markedly increased (resp. decreased) in converging (resp. diverging) flows at high 
Reynolds numbers. 

t Present address: Intevep SA, Los Teques (EPPR-32) Apdo. 76343, Caracas 1070-A, Venezuela. 
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1. Introduction 
Though the problem of the determination of the forces exerted by an axisymmetric 

flow on a sphere has been extensively studied in the literature, there still exist many 
open questions concerning the effect of the acceleration of either the fluid or the body. 
More precisely, well-known theoretical results were established early on in the Stokes 
flow limit (Boussinesq 1885; Basset 1888) as well as in the case of inviscid fluid (see 
Lamb 1932). Between these two extreme situations the theory is missing and the 
experimental results are very scarce, whereas most of the numerical investigations have 
only been concerned with steady uniform flows. The purpose of the study reported here 
is to fill a part of this gap by investigating numerically various accelerated flows around 
a sphere at Reynolds numbers in the range 0.1 < Re d 300 (Re = pI VJ D / p ,  where D 
is the sphere diameter, Vrel the upstream relative velocity and p and p the density and 
viscosity of the fluid respectively). Both spatial and temporal accelerations are 
considered. The present paper (Part 1) only considers steady uniform or non-uniform 
flows. A companion paper (Part 2, Magnaudet et al. 1995) is devoted to uniform 
unsteady flows. Furthermore, in order for the results to be applicable to both 
particulate flow and bubbly flow, the cases of a rigid body and a spherical bubble are 
considered altogether. 

The first theoretical studies concerning the forces experienced by a sphere 
accelerating in an inviscid fluid at rest must be attributed to Poisson and Green as 
mentioned by Lamb (1932). The result, familiar to students in fluid mechanics, 
expresses the added mass force F, versus the acceleration of the sphere up = d V,/dt, 
as F, = - C, pYu ,  ( V ,  denoting the velocity of the sphere). In this equation Y = 
xD3/6  is the volume of the sphere and C, is the added mass coefficient equal to f. If 
the velocities of both the sphere and the fluid vary in time, an extra term appears 
representing the part of buoyancy caused by the driving pressure gradient (see for 
example Batchelor 1967). The total inertia force FI thus becomes FI = 
p Y [ a  V/at + C,(a V/at - a,)], where V denotes the unperturbed fluid velocity. The 
generalization of this expression to non-uniform fluid motions has been a subject of 
interest for a long time. Taylor (1928) and Tollmien (1938) carried out pioneering work 
on this: they calculated the rate of change of the kinetic energy of the inviscid flow 
around a sphere and found that the body experiences an inertia force. Voinov, Voinov 
& Petrov (1973); Lhuillier (1982) and Auton, Hunt & Prud’homme (1988) rediscovered 
and extended these works. All these authors demonstrated that in the expression for 
FI the time derivative aV/at has to be replaced by the fluid acceleration evaluated at 
the centre of the sphere, i.e. D V / D t  = a V/at + V -  V V. This yields 

(1) 

with the aforementioned value of the added mass coefficient C,  = f. Very few 
experiments have been carried out to confirm (1) and to determine CM in steady non- 
uniform flows. Taylor (see Auton et al. 1988) performed wind tunnel experiments in 
converging and diverging flows and concluded that the inviscid theory accurately 
predicts the equilibrium positions of bodies of different forms. Naciri (1992) (see also 
Bataille, Lance & Marie 1990) determined precisely the equilibrium position of a 
bubble introduced into a purely rotating flow. From this measurement the author 
evaluated the rotational lift coefficient C,, related to the lift and added mass 
coefficients C, and C, through C,, = C, -f(l + C,). His results agree qualitatively 
with the inviscid theory of Auton et al. (1988) but do not allow a separate 
determination of C, and C,. However, in a separate experiment the same author 

4 = p Y [ D  V / D t +  CM(D V / D t - ~ p ) l ,  
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evaluated C, indirectly. Starting from the theoretical result of Darwin (1953) who 
demonstrated that when a sphere describes a rectilinear motion in an inviscid fluid at 
rest at infinity the mass displaced by the sphere is equal to the added mass, Naciri 
measured by optical means the volume of fluid displaced by a bubble in a quiescent 
liquid and showed that the resulting value of C, is nearly equal to i, for Reynolds 
numbers of the bubble ranging between 500 and 1000. Experimental investigations 
concerning the added mass force in unsteady flows will be discussed in Part 2. 

Concerning viscous flows, nearly all the work reported in the literature up to 1955 
was devoted to the effects of temporal acceleration in uniform flows. For example, 
extending the results of Boussinesq (1885) and Basset (1888), Tchen (1947) showed that 
when the velocities of both the sphere and the fluid vary in time, the unsteady creeping 
motion of a rigid sphere of density pp is governed by 

The extension of (2) to non-uniform unsteady flow has been the subject of several 
subsequent papers, containing some errors as discussed by Maxey & Riley (1983). 
These authors as well as Gatignol(l983) took into account the secondary influence of 
flow inhomogeneity on the three last terms of (2) and evaluated the corresponding 
corrections (so-called FaxCn forces). Furthermore Maxey & Riley (1983) addressed the 
question of the generalization of the time derivatives a V/at to non-uniform flows. They 
showed that the first derivative aV/at appearing in the right-hand side of (2) must be 
replaced by the fluid acceleration D V/Dt. In contrast they concluded that in the two 
last terms of (2), a V/at must be replaced by the derivative of V following the moving 
sphere, i.e. d V/dt = a V/at + V p .  V V.  They noted that the corresponding expression 
for the added mass force differs from that given by (1) and showed that the choice 
between D V/Dt and d V/dt cannot be made starting from (2) because both expressions 
become indistinguishable when Re < 1. 

These latter points are underlined to emphasize the fact that difficulties remain in the 
elaboration of a rational equation of motion for spherical particles. However, such an 
equation valid at finite Reynolds numbers is highly desirable: it is the key that allows 
an accurate computation of the trajectories of rigid particles and bubbles in real flows 
as well as a correct evaluation of momentum exchanges between the particles and the 
surrounding fluid in dispersed two-phase flows. In particular, several studies have 
recently appeared where particle dispersion in turbulent flows is studied numerically 
once the turbulent field has been obtained by direct numerical simulation of the 
Navier-Stokes equations. It is clear that such an approach is very powerful but that a 
reliable description of the turbulent flow is not sufficient: results are general and 
accurate only if the dynamic equation governing the motion of the particles is able to 
take into account the influence of flow inhomogeneity and unsteadiness on the 
instantaneous drag. A way to contribute to these questions is to begin by computing 
and examining carefully several very simple accelerated flows where only one or two 
effects are present in each. This first step provides a unique way to determine clearly 
the evolution of several coefficients involved in the expression for the hydrodynamic 
forces as well as the correct form of these forces. When such studies are available for 
quite different situations a first approximation of the general expression for the 
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hydrodynamic forces could be obtained by superposition. In a final step this expression 
could be refined by studying more complicated situations involving coupled effects. 

The present work belongs clearly to the first step of this general approach. Using the 
same guideline Part 2 is devoted to uniform unsteady flows at finite Reynolds number. 
In the present paper we only present results obtained in steady flows. Uniform flow is 
examined first as a reference. Then the simplest steady non-uniform flow with spatial 
acceleration, namely purely straining flow, is studied. At first glance this flow looks 
quite academic with respect to real situations because a particle moving in a straining 
flow experiences not only a spatial acceleration but also transient effects. However, in 
the spirit of the foregoing discussion we believe that this flow contains some essential 
features which allow to address the following questions : 

(i) can the result expressed by (1) for inviscid non-uniform flow be extended to 
viscous flow and if so, how does the added mass coefficient depend on the Reynolds 
number? 

(ii) are there specific viscous effects induced by steady accelerated flows? 
(iii) what is the proper generalization to non-uniform flows of the fluid acceleration 

(iv) does the flow around a rigid sphere exhibit a different behaviour from that 
involved in the history force of (2)? 

around a spherical bubble? 

2. Numerical method 
2.1. Governing equations 

The problem of determining the hydrodynamic forces on a sphere in accelerated flows 
requires the solution of the unsteady axisymmetrical Navier-Stokes equations. Unlike 
most of the earlier works devoted to the steady flow around a sphere (where the 
Navier-Stokes equations were solved using the stream-function/vorticity formulation), 
the formulation using the primitive velocity-pressure variables is adopted in the 
present study. Furthermore the equations are written in general orthogonal coordinates 
instead of the usual spherical coordinates. These computational choices give a lot of 
flexibility and allow the present code to be used for solving quite complicated 
problems. 

To write the resolved equations let us introduce the contravariant velocity 
component K along the coordinate line 6; and the physical length dti  = hidti (hi 
denoting the metric factor along the direction and no summation being assumed 
on i). Defining the stretching factors 

H{ = hi1 ahi/ag (3) 

and the generalized divergence operator 

v. (i)( 1 = a( ) /X i  + c H;( 1, 
k + i  

the equations can be written in the compact conservative form (Pope 1978): 

ZV.(,, y = 0, 
i 

(4) 
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6; = const 
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4; = const 

FIGURE 1. Typical staggered finite-volume cells: 0,  pressure node; +, V, node; f, V, node. 

where P denotes the pressure, p the density and rii the components of the viscous stress 

v being the kinematic viscosity. Equations (5) and (6) can also be written in the integral 
form 

c 

+Z (r i j -  K q ) n j d d .  (9) 
i d  J 

2.2. Spatial approximations and grid system 
We use a finite-volume approach in which both components of (6)  are first written at 
the velocity nodes of a staggered mesh (see Harlow & Welch 1965) then integrated in 
the form (9) on the corresponding volumes shown in figure 1. Let us consider for 
example the V, equation (V, and V, denoting the velocity components along the 
coordinates lines t; = const. and 6; = const. respectively). In a way consistent with 
second-order accuracy we assume the source terms to be constant on the volume Vvl 
and each flux term to be constant on the corresponding surface d so that the V, 
equation can be written, following the notation of figure 1, 

All the spatial derivatives are approximated using second-order central differences 
evaluated directly in the physical domain. Owing to the relative position of V,, V,  and 
P nodes (to be described later), second-order accuracy requires only two-point 
differences except for the evaluation of the normal derivatives a v,/acl and a V,/ag, 
involved in the viscous stresses. These two terms require a three-point formula on non- 
uniform meshes and they are actually evaluated using four points so as to preserve 
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spatial symmetry. Equation (1 0) contains advective fluxes whose evaluation requires 
velocity components to be known at P nodes and at vertices of Vp. In a similar way 
the curvilinear terms of the right-hand side require viscous stresses and velocities to 
be evaluated at the nodes of V,. This is achieved through a linear interpolation 
procedure which guarantees second-order accuracy. A different procedure is used to 
evaluate the mass fluxes involved from advective terms (the angle-bracketed terms of 
the left-hand side) : since a mass balance is only specified on Vp cells it is easy to show 
that in curvilinear meshes mass is not a priori conserved on Vvl and Vvz. To guarantee 
this conservation, bracketed mass fluxes are calculated as a whole through a linear 
interpolation of mass fluxes crossing the corresponding boundaries of the two 
contiguous Vp cells (Galpin & Raithby 1986). 

Let us now describe briefly the main characteristics associated with the generation 
of the curvilinear mesh. A rectangular mesh is first defined in the numerical plane (ti, 
t;). Grid control is performed at this stage so that the (ti, ti) mesh is non-uniform. V, 
and & nodes are located midway between two neighbouring pressure nodes in this 
plane. This arrangement allows one to compute second-order-accurate first derivatives 
with a two-point formula on Cartesian or polar grids. Then the locations of the P 
nodes and the locations of the vertices of Vvl, Vvz and Vp are mapped on the physical 
domain through a numerical or an analytical mapping. For a single sphere or a circular 
cylinder of radius R embedded in an infinite domain, a conformal mapping can be 
obtained very easily since the equations defining the streamlines Y = const. and the 
equipotential lines 4 = const. are known analytically (Conner & Elgobashi 1987). 
Equations corresponding to the potential flow around a cylinder have been selected 
because they are easier to handle numerically. Defining a polar coordinate system (0, r)  
centred on the sphere (the angle 0 increasing clockwise with 0 = 0 along the negative 
part of the 6; axis), a point M' of the numerical plane (6; = #,ti = !P) is associated 
with a point M of the physical plane (0, r )  through the transformation 

(1 1) 
(12) 

It is worth noting that after the mapping the relative positions of velocity and pressure 
nodes within a cell are slightly modified by the stretching factors H i  and H i .  However, 
it is straightfoward to show that these modifications only occur at second order. This 
is the reason why two-point differences remain second-order accurate on the curvilinear 
mesh except perhaps in the vicinity of singular points of the mapping. 

Near the sphere the curvilinear terms of (9) have an important weight and it is crucial 
to evaluate correctly the radii of curvature H:, H i ,  H t  and H t  ( H ;  and H i  are zero 
since the system is axisymmetrical). This is achieved easily with the aid of an integral 
formulation: it is straightforward to show for example that 

where 4, denotes the surface of the 6 cell in the (x,y) plane, whereas Yn and are 
the lengths of the arcs bounding 4, and belonging to dn and 4 respectively. A similar 
expression can be obtained for the other radii of curvature. This procedure has been 
found to produce far better estimations than a direct numerical evaluation of the 
geometrical definition of the Hi. 

2.3. Time advancement of the solution 
The solution is advanced in time through the following algorithm : the fractional-step 
method proposed by Brailovskaya (1 965) is employed to stabilize the advective terms 
discretized with the centred scheme previously described, whereas incompressibility is 

$ = -  cos 0(r + R2/r), 
Y = sin 0( 1 - R2/r2) .  

(H3" 4l = =% - % (13) 
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satisfied by using the SMAC method of Amsden & Harlow (1972). Depending on the 
flow Reynolds number, viscous terms are evaluated explicitly or implicitly so as to 
remove the stability constraint imposed by diffusion. Let us describe the complete 
algorithm in the simplest case of an explicit evaluation of the viscous terms. Using for 
compactness the local form of the momentum equation (6)  and denoting by SAi and 
SK the advective and viscous parts of the curvilinear source terms respectively, the 
algorithm is as follows. 

Predictor step 

Since the predictor velocity P;+l must be divergence-free the auxiliary pressure 6”+’ 
satisfies the Poisson equation 

Corrector step 

~. 
with @”+’ satisfying 

The pressure field at time (n + 1) At is then given by 

p n i l  = P” + P + l .  

This algorithm provides a solution which is first-order accurate in time. Since the 
matrix resulting from the Poisson equation need only be inverted once at the beginning 
of the computation, this explicit algorithm which is made stable for CFL numbers less 
than unity is very efficient. 

2.4. Boundary conditions 

Two types of boundary conditions deserve a few comments since they are not provided 
directly by the physics. The first type is the set of conditions needed to treat the 
boundaries where the flow leaves the computational domain. No physically meaningful 
condition exists for such boundaries and the development of absorbing conditions 
avoiding perturbations of the flow is still an active area in computational fluid 
dynamics. The heuristic technique used in the present study is as follows. Evaluation 
of advection, diffusion and normal pressure gradient in the momentum equations (9) 
written in cells adjacent to an outflow boundary requires a priori knowledge of velocity 
components and pressure downstream. For this purpose a row of fictitious cells is 
introduced downstream from the boundary. In such cells, the tangential and normal 
velocity components V, and V, (defined with respect to the boundary under 
consideration) and the pressure P are evaluated explicitly using the information 
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available upstream and assuming that right at the boundary the flow field satisfies the 
set of parabolic approximations 

(19a-c) 

(a/aN and a/aT denote the normal and tangential derivatives respectively). Condition 
(19c) traduces the momentum balance of aV,/aN obtained within the parabolic 
approximation. The normal derivatives of &+l and Qn+l are also needed to obtain the 
normal velocity right on the boundary (see (14b)-(16b) and figure 1). Since (18) does 
not hold in the ficticious cells, the condition on the auxiliary pressure is not dictated 
by condition (19c) in such cells. Thus it is assumed that during a time step the pressure 
remains frozen in the fictitious cells, i.e. 

0. (20) 
Using condition (20) and the values of VT, VN, P determined by conditions (19a-c), the 
momentum equations (9) are solved in the last row of cells located upstream from the 
boundary as for a standard cell. 

A second set of boundary conditions which is not straightforwardly provided by the 
physics is needed on boundaries where the normal velocity VN is given (but can vary 
in time): because of the use of a fractional-step method it is necessary to prescribe 
conditions for the intermediate fields V g  and fg .  When viscous terms are treated 
explicitly the condition can be chosen arbitrarily (Peyret & Taylor 1983). When an 
implicit scheme is used it can be shown, following the analysis of Moin & Kim (1985), 
that with the present algorithm the correct boundary condition for these quantities is 

Consequently the condition (21) is used on such boundaries whatever the scheme 
employed for viscous terms. As is well known no condition on the pressure P is needed 
at the boundary. However, in a way consistent with (14b) and (16b) the auxiliary 
pressures @+l and Qn+l obey a6n+l 

6 n + 1  = @n+l = 

- 
(21) * - f n + 1  = V* - Vn+1 

' N -  N N -  N .  

- 0. (22) 
aSpn+l - 

aN aN 

2.5. Preliminary testing 
Before being used to compute flows around a sphere, the code was extensively tested. 
Details of the tests can be found in Rivero (1991). The spatial and temporal accuracy 
was determined by simulating the Green-Taylor vortex for which an analytical 
solution of the full time-dependent Navier-Stokes equation exists. The results 
confirmed that spatial accuracy is of second order while temporal accuracy is of first 
order. The driven-cavity problem with a parabolic slip velocity was treated to evaluate 
the effects of numerical diffusion. Results were compared to those reported by Peyret 
& Taylor (1983). The solution given by the present code was found to lie closer to the 
reference solution (obtained with a fourth-order Hermitian method) than all other 
second-order-accurate solutions reported in the comparison. The influence of the 
outlet conditions (19 a-c) and (20) was first evaluated by computing the development of 
a Poiseuille flow in a circular pipe. Results showed that the parabolic velocity profile 
found in the outlet plane was exactly identical to those obtained in the preceding cross- 
sections. More severe tests were performed later including situations where vortices or 
internal waves (generated by coupling (8) and (9) with a density equation) leave the 
domain. Conditions (19a-c) and (20) were found to work well in all cases. 

A second series of tests was carried out in order to determine the optimal 
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v, = v, 
v, = 0 

= O  

= O  

FIGURE 2. Partial view of the (4, !P) mesh with outer boundary conditions. 

characteristics of the mesh to be used for computing the flow around a bluff body. For 
this purpose two well-documented steady flows, namely the flow around a circular 
cylinder at Re = 20 and that around a rigid sphere at Re = 100 were studied. Results 
obtained using polar (or spherical) coordinates were compared to those obtained with 
the (4, u;? coordinate system defined by (1 1) and (12). Potential flow conditions were 
used on the outer circular boundary in the first case. With the second grid the inflow, 
free-stream and outflow boundary conditions shown in figure 2 were imposed on the 
velocity field together with conditions (22), and (19c) and (20) for the pressure as 
discussed in the previous subsection. Results obtained for the circular cylinder using 
the polar grid showed that quantities such as separation angle and reattachment length 
of the separated region were sensitive to the outer radius R, even for ratios R,/R as 
large as 130. In contrast satisfactory results were obtained with the (4, u;? grid using 
much smaller values of 4, and Y,. For that reason the (4, !P) grid and the 
aforementioned set of outer conditions are used in all the simulations reported in this 
work. To determine the optimal size of the computational domain the flow at Re = 100 
around a rigid sphere was computed using several values of and Y,. A value of 40 
produced satisfactory results but the value of 80 was finally retained for all the 
computations in order to avoid confinement effects in low-Re flows. Thus the 
computational domain shown in figure 2 actually extends up to 80 radii of the sphere 
upstream and downstream as well as along the direction normal to the symmetry axis. 
An exponential distribution of grid points centred on the sphere was chosen along both 
directions. The number of grid points was determined so that the solution was grid- 
independent. This led to a 72 x 36 grid with only 15 points on the sphere : comparisons 
made with simulations using up to 32 points on the sphere did not show any significant 
difference between both solutions. A comparison of results obtained with the 72 x 36 
(4, u;? grid and with a 32 x 32 spherical grid is shown in figure 3(u, b): vorticity and 
pressure distributions found at the surface of the sphere with both grid systems are very 
close, even near the stagnation point where curvatures of the (4, !P) grid are very severe. 
Furthermore both results compare very well with those found by Le Clair, Hamielec 
& Pruppacher (1970). 
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FIGURE 3. Comparison of surface distributions obtained with a spherical grid and with the ($, y) grid 
(rigid sphere at Re = 100). (In all figures vorticities and pressures are normalized by 2VJD and kpV: 
respectively.) (a)  Vorticity; (b) pressure: 0, spherical grid; A, ($, !P) grid, f, LeClair et al. (1970). 
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---------- (a) - - - --- __ 

- - -  __ --- --- _* 

FIGURE 4. Velocity field around a sphere in a uniform steady flow (Re = 300): 
(a) rigid sphere, (b )  inviscid bubble. 

3. Steady uniform flow 
3.1. General considerations 

Before dealing with accelerated flows we start by considering uniform steady flows 
around a rigid sphere or a spherical bubble. This situation has already been studied 
numerically by many authors, in particular Rimon & Cheng 1969; Le Clair et al. 1970; 
Dennis & Walker 1971; Fornberg 1988 for the rigid sphere; and Brabston & Keller 
1975; Ryvkind & Ryskin 1976; Oliver & Chung 1987 for the inviscid bubble. However, 
this step is necessary in order to perform comparisons with accelerated situations and 
more precisely in order to determine in such cases the net effect of acceleration 
evaluated with the same computational tool. 

The present work only considers Reynolds number up to 300 because this limit 
corresponds roughly to the transition region between axisymmetric flow and non- 
axisymmetric vortex shedding regime for rigid spheres (Achenbach 1974) and to the 
appearance of the first significant deviations from sphericity for air bubbles in water. 
However, it must be noted that in the case of the rigid sphere, considerable uncertainty 
exists concerning the critical Reynolds number Re, at which non-axisymmetric flow 
appears: most experiments do not detect vortex shedding before Re = 400 (Clift, Grace 
& Weber 1978) but Sakamoto & Haniu (1990) reported a value of Re, roughly equal 
to 300. Up to now numerical stability analyses of the flow behind a sphere are not in 
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FIGURE 5. Surface distribution of vorticity and pressure at Re = 1. (a) Vorticity; (6) pressure: ., 
present study (rigid sphere); 0,  LeClair et al. (1970); -, Stokes (1851); +, present study (bubble); 
___ , Hadamard-Rybczynski (191 1). 

agreement either on the value of Re, or on the nature of the transition to non- 
axisymmetric flow: Kim & Pearlstein (1990) found a Hopf bifurcation at Re, = 175.1 
while Natarajan & Acrivos (1993) found a regular bifurcation at Re, = 210. These 
uncertainties suggest that the results presented hereafter for the steady flow at Re = 
300 must be taken with caution. 

The flows are computed using the grid and the outer boundary conditions already 
described. On the body no-slip conditions are imposed for the rigid sphere, i.e. 

whereas the bubble surface is considered as a shear-free interface, i.e. 
v ,=o ,  v , = o ,  (23 a, b) 

aK/aC,-H? V, = 0 ( H ?  = 1/R on the sphere), V, = 0. (244 b) 

3.2. Local distributions: velocity and surface parameters 
The qualitative difference between the flow around a rigid sphere and that around an 
inviscid bubble is particularly prominent at high Reynolds numbers. It is clearly 
illustrated by comparing the velocity fields at Re = 300 plotted on figure 4(a, b): figure 
4(a)  shows the large separated region followed by a very pronounced wake which exists 
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FIGURE 6. Surface distribution of vorticity and pressure at Re = 10. (a) Vorticity, (b) pressure (rigid 
sphere): 0, present study (rigid sphere); A, LeClair et al. (1970); +, Dennis & Walker (1971); x ,  
Rimon & Cheng (1969); 0, present study (bubble); V, Brabston & Keller (1975). (c) Pressure 
(bubble): 0, present study; a, Brabston & Keller (1975); ---, potential solution. 

at the rear of the rigid sphere while figure 4(b) shows that only a small asymmetry exists 
between upstream and downstream regions near the bubble. Furthermore the velocity 
profile at the top of the sphere shows that the boundary layer around the rigid sphere 
is thick while for the bubble maximum velocity is located very near the surface. 

These differences can be analysed more precisely by examining the distributions of 
vorticity and pressure at the surface. Let us first define precisely these quantities. Since 
the flow is assumed axisymmetric the only component of vorticity lies in the azimuthal 
direction and is given by 

(25) 
av 

at -2  at ,  2 2' 
w = - + f p V - - 1 - H l I /  av, 

Owing to boundary conditions (23) and (24), this reduces at the surface to 
w,  = aK/at, for the rigid sphere, w, = 2H; V, for the inviscid bubble. (26a, b) 

The pressure at the surface is defined as P, = (P-Po) where Po denotes a pressure 
reference chosen on the upstream boundary. Since the pressure is not directly known 
at the surface its value on the sphere is calculated using a two-point second-order- 
accurate extrapolation. Vorticities and pressures shown in the figures are scaled by 
2 V,/D and i p  V k  respectively (note that since the sphere is set fixed the relative velocity 
VTel is equal to the upstream fluid velocity V,). 

Surface vorticities and pressures are plotted on figures 5-8 for Reynolds numbers 1, 
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FIGURE 7. Surface distribution of vorticity and pressure at Re = 100. (a) Vorticity, (b)  pressure (rigid 
sphere): 0, present study (rigid sphere); A, LeClair et al. (1970); +, Rimon & Cheng (1969); x ,  
present study (bubble); 0, Brabston & Keller (1975). (c)  Pressure (bubble): 0, present study; A, 
Brabston & Keller (1975); ---, potential solution. 

10, 100 and 300 and compared with some available theoretical or numerical results. 
Distributions of vorticity show striking differences between the rigid sphere and the 
inviscid bubble: while for the bubble they remain nearly symmetric with respect to 
8 = in whatever the Reynolds number, they become increasingly asymmetric for the 
rigid sphere. In this latter case a region of negative values appears for Re 2 20. When 
Re increases from 1 to 300 the maximum vorticity increases by one order of magnitude 
for the rigid sphere and only by a factor of 3 for the bubble. The evolution with Re of 
the pressure at the surface of the bubble shows that when Re increases this quantity 
goes from the odd distribution typical of creeping motion to the even distribution 
characteristic of potential flow. At Re = 300 the pressure differs significantly from the 
potential solution only in the region located near the rear stagnation point. In contrast 
a strong asymmetry remains at the surface of the rigid sphere because the pressure 
tends to stay nearly constant on the half-rear. 

Comparisons of these results with those of previous investigators show a very good 
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FIGURE 8. Surface distribution of vorticity and pressure at Re = 300. (a) Vorticity, (b) pressure (rigid 
sphere): 0, present study (rigid sphere); A, LeClair et al. (1970); +, Rimon & Cheng (1969); x , 
present study (bubble). (c) Pressure (bubble) : 0, present study; ---, potential solution. 

agreement for vorticity distributions, especially those found by Le Clair et al. (1970) 
for the rigid sphere and by Brabston & Keller (1975) for the inviscid bubble. For the 
pressure at the surface a very good agreement is again found with the results of Le Clair 
et al. (1970). In contrast significant discrepancies, increasing with Re, exist near the top 
of the bubble with the results of Brabston & Keller (1975). This difference is probably 
due to the method of truncated series used by those authors: their method did not 
contain enough terms to deal with Reynolds numbers beyond 50 (see Dennis & Walker 
1971). 

3.3. Global parameters: characteristics of the separated region and drag coeficient 
For a rigid sphere it is well known (see e.g. Batchelor 1967) that a separated region 
appears for a critical Reynolds number Re, z 20. The critical value found in the 
present simulations is precisely 20.0. The two main characteristic parameters of this 
separated region, namely the separation angle and the reattachment length on the 
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FIGURE 9. Characteristics of the separated region behind a rigid sphere in a uniform steady flow. (a) 
Separation angle (measured from the rear stagnation point), (b) reattachment length: ., present 
study; A, Fornberg (1988); +, Pruppacher et al. (1970); 0, Taneda (1956). 

symmetry axis, are determined by an interpolation procedure. Their evolution with Re 
is shown in figure 9(a, b) and compared to the experimental results of Taneda (1956) 
and to the numerical predictions of Pruppacher, Le Clair & Hamielec (1970) and 
Fornberg (1988). A very good agreement is found for the separation angle for all 
approaches. Concerning the reattachment length, a similar agreement is found for 
Re < 150 but appreciable differences appear for higher values of Re, especially with 
the data of Fornberg (1988). This discrepancy has probably the same origin as that 
observed in figure 8(a)  (Re = 300) with the results of Le Clair et al. (1970) in the 
separated region : these two groups of authors performed strictly steady computations 
while the present algorithm enables internal unsteadiness to exist in the flow. As a 
consequence the standing eddy slowly oscillates along the symmetry axis for Re > 150. 
The characteristics of the separated region are undoubtly modified by this oscillation 
and it can be noted in figure 9(b) that our results for the recirculation length behave 
qualitatively as those obtained experimentally by Taneda (1956) who observed a 
similar oscillation for Re > 130. 

The drag force FD experienced by the sphere is computed by integrating the stress 
tensor on the surface according to the definition: 
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FIGURE 10. The drag coefficient in a uniform steady flow. (a) Rigid sphere: ., present study; 0, 
LeClair et al. (1970); 0, Dennis & Walker (1971); -, Stokes (1851). (b )  Inviscid bubble: ., 
present study; A, Brabston & Keller (1975); +, Ryvkind & Ryskin (1976); -, 
Hadamard-Rybczynski (1911); ---, Levich (1949, 1962); . . . ., Moore (1963). 

where and 7TN denote the normal and tangential viscous stresses respectively while 
e,, n and t are unit vectors along the streamwise, normal and tangential local directions 
respectively. In fact only one viscous contribution appears for each kind of sphere since 
7 T N  is zero for the bubble whereas conditions (23 a, b) combined with continuity show 
that 7" vanishes at the surface of the rigid sphere. Normal stresses which are only 
known at pressure nodes are extrapolated on the surface using the same procedure as 
for pressure. As usual we introduce the drag coefficient C, defined by 

l$ = cD;7cD2p v:. (28) 

According to (27), C, is split into a pressure drag coefficient C,, and a viscous 
contribution CvD. Figure 10(a, b) displays the evolution of C, with the Reynolds 
number for the rigid sphere and the bubble respectively. Values of C,, and C,, 
obtained for ten Reynolds numbers ranging between 0.1 and 300 are reported in tables 
1 and 2 and are compared to those found in previous numerical studies and to some 
well-known asymptotic results. The present values agree well with those found by Le 
Clair et al. (1970) for the rigid sphere and by Ryskin & Leal (1984a) and Brabston & 
Keller (1975) for the inviscid bubble (the difference previously mentioned between the 
pressure at the surface found by Brabston & Keller 1975 and the present results has no 
severe consequences because it concerns mainly the symmetric part of P, near the top 



Re 0.1 0.2 0.5 1 .o 5 10 20 100 200 300 

Authors 
- - - - - - Stokes (1 85 1) 240 120 48 24 

Proudman & Pearson (1957) 244.5 124.5 52.5 28.5 

Rimon & Cheng (1969) 

- - - - - - 
( 160) (80) (32) (16) 

(19) (163) (83) 

Le Clair et ul. (1970) 244.51 - - 27.38 7.121 4.337 2.736 1.096 0.772 0.632 
- - - 4.398 - 1.014 0.727 0.610 

(1 63.45) (18.29) (4.677) (2.801) (1.719) (0.590) (0.372) (0.283) 
Dennis & Walker (197 1) 244.20 124.02 51.70 27.43 7.210 4.424 2.730 

(162.80) (82.68) (34.46) (18.27) 
Present study 244.44 123.73 50.64 27.54 6.918 4.317 2.707 1.092 0.765 0.645 

(165.16) (84.08) (34.40) (18.69) (4.630) (2.837) (1.721) (0.584) (0.368) (0.270) 

TABLE 1. Drag coefficient of a rigid sphere in a uniform steady flow (when available the number in parentheses indicates the value of 
the friction drag coefficient) 

- 
(35) 
- 

- - - 

Re 0.1 0.2 0.5 1 .o 5 10 20 100 200 300 

Authors 
- - - - - Hadamard-Ribczynski (191 1) 160 80 32 16 3.200 

Taylor & Acrivos (1964) 162 82 34 18 5.2 - - - 

(106.67) (53.33) (21.33) (10.67) (2.133) 

(108) (54.67) (22.67) (12) (3.467) 
- - 

Levich (1949, 1962) - - - - 9.600 4.800 2.400 0.480 0.240 0.160 

Brabston & Keller (1975) 161.66 - 33.70 17.59 4.368 2.350 1.362 0.375(*) 0.197 - 

Ryskin & Leal (1984~) - - - 17.50 4.260 2.430 1.410 0.380 0.220 - 

Oliver & Chung (1987) - 33.80 17.60 - 2.480 1.430 - - - 

(6.400) (3.200) (0.160) (0.320) (0.160) (0.107) 
Moore (1963) - 1.444 1.214 0.374 0.203 0.140 

Ryvkind & Ryskin (1976) - 33.80 17.50 2.430 1.410 - - 

- - - - 

- - - 

- 

Present study 161.80 82.18 33.76 17.44 4.266 2.41 1 1.322 0.369 0.200 0.138 
(103.26) (52.40) (21.52) (11.42) (2.692) (1.544) (0.801) (0.233) (0.127) (0.088) 

* Interpolated value 

TABLE 2. Drag coefficient of an inviscid spherical bubble in a uniform steady flow (when available the number in parentheses indicates the value of 
the friction drag coefficient) 

c 
c 
P 

r, 

is 

r, 
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of the bubble). The results obtained for the rigid sphere confirm that the empirical drag 
law 

C - -{ 1 +0.15Re0.687) 

often used in practical calculations involving rigid particles (see e.g. Clift et al. 1978) 
gives C, with an error less than 6% in the whole range of Re covered by our 
investigation. Concerning the bubble it is worth noting that the asymptotic expression 
C, = 48Re-’(1-2.21 Re-’”) given by Moore (1963) provides very accurate estimates for 
Re 2 50. For Re < 50 our results are fitted with an accuracy better than 5 %  by the 
correlation 

(29) 
24 

- Re 

C - -{1 16 +0.15Re0.5) 
- Re 

which matches Moore’s expression at Re = 50. The ratio C,,/C, can be calculated 
from the results reported in tables 1 and 2. For the bubble this ratio varies from 0.64 
at Re = 0.1 to the same value 0.64 at Re = 300. The creeping flow theory (Hadamard 
191 1 ; Ribczynski 191 1) as well as the high-Reynolds-number theory (Kang & Leal 
1988) give C,,/C, = g. Our results suggest that in the case of an inviscid bubble the 
relative contribution of pressure and viscous normal stress does not vary significantly 
with the Reynolds number. In contrast, for the rigid sphere the ratio C,,/CD varies 
from 0.67 at Re = 0.1 to 0.42 at Re = 300, meaning that the contribution of the 
pressure drag to the total drag of a rigid sphere becomes increasingly important with 
Re. This is a consequence of the nearly constant pressure found on the rear half of the 
sphere for Re 3 10 and of the negative surface shear stress associated with the 
recirculating zone. 

4. Stationary straining flow 
4.1. General considerations 

Stationary axisymmetric straining flow has been widely studied in the context of the 
deformation and breakup of drops and bubbles as it provides the essential ingredients 
leading to large deformations. Owing to the difficulties of the problem most of these 
studies have considered only creeping motions (see Rallison 1984 for a review). 
However, in the last decade a pioneering series of computations of bubble deformation 
at finite Reynolds numbers has been carried out: Ryskin & Leal (1984b) applied the 
numerical technique developed by Ryskin & Leal (19844 to study bubble deformation 
in steady uniaxial straining flows. Some years later Kang & Leal (1987, 1989) 
generalized this approach to unsteady flows and studied both uniaxial and biaxial 
situations. The flow fields considered in all these works are symmetric with respect to 
the equatorial plane of the bubble so that no drag force exists. We are not aware of any 
numerical simulation of a steady axisymmetric straining flow around a non-deformable 
sphere. However, this flow represents a model of frequently encountered situations 
such as nozzles, sudden expansions or contractions and axisymmetric jets. Moreover 
the combination of a uniform stream with a steady axisymmetric straining flow 
represents the simplest situation in which, according to the results of Taylor (1928), 
Tollmien (1938), Voinov et al. (1973), Lhuillier (1982) and Auton et al. (1988), a sphere 
at rest experiences an added mass force caused by the spatial acceleration term V -  V V.  
All these theoretical results were obtained for an inviscid fluid. To check their validity 
in viscous flows and more generally to examine the combined effects of pure strain and 
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FIGURE 1 1. Steady axisymmetric straining flow: geometry and boundary conditions. 
(a) a > 0, (6) a < 0. 

viscosity on the flow around a sphere the simplest axisymmetric straining flow has been 
selected. This basic flow is defined by 

(3 1 a, b) 

The flow around the sphere (whose centre is located at z = a = 0) can be characterized 
by a Reynolds number and an acceleration number defined respectively by 

The acceleration number can be seen as the ratio between the acceleration due to the 
unperturbed flow (aV,) and that due to the presence of the body (Vi /D) .  Note that 
according to definition (32b) the sign of the acceleration number changes with the sign 
of the strain for a given V,. 

In spite of its simplicity this flow is difficult to handle numerically: since a must be 
chosen large enough to produce significant effects on the sphere, V,  varies by more than 
one order of magnitude inside the computational domain IzI d zoo, c < am. Then owing 
to the large size of this domain a stagnation point exists. This point belongs to a plane 
where the streamwise velocity given by ( 3  1 a)  vanishes. For positive values of Ac this 
plane lies in the upstream part of the flow and the outer boundary conditions are 
chosen as shown in figure 11 (a). In contrast when Ac is negative the flow is divergent 
and the stagnation point lies in the wake of the sphere. The outer boundary conditions 
are then chosen as indicated in figure 11 (b). It is necessary to include the region where 
flow reversal occurs in the computational domain, especially when Ac < 0: if the size 
of the domain was reduced so as to keep V,(z) positive whatever IzI d z ,  an artificial 
confinement of the flow would be created for any significant value of Ac. Note that the 
unperturbed pressure distribution corresponding to (3 1 a, b) is given by 

V,(z) = v, + az, V,(a) = - aG-12. 

Re, = V, D / v ,  Ac = aD/ V,. (32a, b) 

P(z, a) = Po -pa v, z - paZ(iz2 + &?) (33) 
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FIGURE 12. Velocity field around a sphere in a steady straining flow (Re, = 300, Ac = 0.2). 
(a) Rigid sphere, (b) inviscid bubble. 

so that the outflow boundary conditions (19a-c) are all satisfied by the basic flow. Two 
different values of 01 leading to JAcl = 0.1 or 0.2 are chosen (JAcl = 0.2 corresponds for 
instance to a sphere of 1 mm of diameter rising or falling with a slip velocity V, = 
0.2 m s-' into a straining flow with a = 40 s-'). Even if the added mass effect is 
expected to be weak at low values of Re, the whole range 0.1 ,< Re, < 300 is 
investigated to examine possible viscous effects. 

4.2. Flow characteristics for Ac > 0 
Figure 12(a, b) shows the velocity fields obtained for the two kinds of spheres at 
Re, = 300 and Ac = 0.2. These flow fields can be compared with those shown in 
figure 4. Owing to mass conservation the free-stream velocity is seen to increase very 
significantly from left to right. An important feature appears in the case of the rigid 
sphere: the separated region is much more reduced than in a uniform flow. This is a 
direct consequence of the existence of the favourable pressure gradient associated with 
a positive acceleration : the adverse pressure gradient usually found on the rear part of 
the sphere is reduced by this additional pressure gradient, delaying the formation of the 
separated region to larger angles. The influence of Ac on the evolution of the 
separation angle and reattachment length with Re,, is shown in figure 13(a, b). First it 
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FIGURE 13. Influence of a positive strain on the characteristics of the separated region. 
(a) Separation angle, (b) reattachment length: ., Ac = 0 ;  A, Ac = 0.1; +, Ac = 0.2. 

can be noted that the critical Reynolds number at which separation occurs is found to 
increase from the well-known value Re z 20 in uniform flow to Re,, z 25 for Ac = 0.1 
and Re, z 36 for Ac = 0.2. Figure 13(a, b) also confirms that the separated region is 
dramatically reduced when Ac is positive (see figure 9a,  b for comparison). For 
example at Re, = 100 and Ac = 0.2, separation occurs at 8 z 145.2' while the flow 
reattaches very near the sphere at LID z 0.19. 

Since separation at the surface of a non-deformable body is associated with a change 
of sign of vorticity, the modifications found in the separated region indicate that the 
presence of the strain changes the distribution of vorticity around the sphere. These 
changes result from two different mechanisms. 

First, additional vorticity is generated at the surface of the sphere because the 
straining flow must satisfy the no-slip or shear-free boundary condition. With respect 
to uniform flow the existence of the strain modifies the distance between two given 
streamlines: for a positive value of Ac this distance is smaller on the rear half of the 
body and larger on the fore half. Thus velocity gradients at the surface of the sphere 
are decreased for 8 < in and increased for 8 > ix (recall that 19 increases clockwise as 
indicated in figure 2). One can thus expect the no-slip boundary condition to cause an 
increase of vorticity for 8 > in and a reduction for 8 c in. In the case of a bubble, the 
vorticity at the surface is directly proportional to the tangential velocity. Since for a 
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FIGURE 14. Influence of the strain on the surface vorticity; Re, = 1. (a) Rigid sphere, 

(b) inviscid bubble: ., Ac = 0.2; 0, Ac = 0 ;  +, Ac = -0.2. 

positive Ac the velocity increases along a streamline, the tangential velocity at a given 
location of the rear half of the bubble is larger than at the symmetric location of the 
fore half. Thus, as for the rigid sphere, vorticity increases for 6' > fn  and decreases for 
6' < in. This can be confirmed by considering the limit for high Reynolds number of the 
straining viscous flow around an inviscid bubble. At leading order in Re-' the non- 
dimensional solution is given by the velocity potential : 

Ac 3 
$(ra,@) = - ra+-;5 cos6'+- -r:+? (1+3cos26'), ( 2;) 24(2 r ! )  (34) 

where velocities have been scaled by V, and distances by the bubble radius @. The 
velocity field derived from (34) generates a non-zero shear stress at the surface of the 
bubble. The zero-shear-stress boundary condition (24a) is then satisfied by adding a 
rotational correction given by 

(35) 
The last term in (35) is due to the existence of the strain and behaves as expected from 
the previous discussion. Figures 14(a, b) and 15(a, b) show the influence of the strain 
rate on the surface vorticity at Re, = 1 and 300 for both the rigid sphere and the 
bubble. They confirm the foregoing conclusions concerning the decrease of w for 8 < 
$IT and its increase for 8 > in. Figure 15 (a, b) shows that an important difference exists 

w(r, = 1,6') = {3sin6'-$4csin26'}. 
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FIGURE 15. As figure 14, but for Re,, = 300. 

between the inviscid bubble and the rigid sphere at high Reynolds number: while the 
effect of the strain has the same magnitude on the two halves of the bubble, as predicted 
by (39, it is much more important on the rear half of the rigid sphere than on its fore 
half. As discussed below, this asymmetry has important consequences for the drag of 
the rigid sphere. 

The second mechanism leading to changes in the vorticity distribution is related to 
vorticity balance. Since the streamlines of the straining flow are different from those of 
a uniform flow, vorticity balance implies a modification of vorticity gradients. 
However, this modification is not completely intuitive : a vortex-stretching mechanism 
which has no counterpart in uniform flow exists in the flow field (31 a, b). The 
stream1 
dimensi 

ines Y = const. corresponding to the velocity field (31 a, b) are given in non- 
ional form by 

, , f 4Y \lt2 

(2 + Ac z,) "a\Za) = 

Far from the sphere viscous diffusion is negligible and vorticity obeys the Helmholtz 
equation (Batchelor 1967) : 

= 0. (37) 

It is thus clear that, outside the domain where viscous effects are important, vorticity 
that has been created at the surface of the sphere does not remain constant along a 
streamline as in uniform flow but varies according to (36) and (37). When Ac is positive 

D(W/") 
Dt 
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FIGURE 16. Influence of the strain on the vorticity field around a rigid sphere; Re, = 300. 
(a) Uniform flow (Ac = 0); AOJ = 1.0, (b) straining flow (Ac  = 0.2); AOJ = 1.0. 

FIGURE 17. The instability mechanism of the biaxial straining flow (Ac < 0). 

(uniaxial straining) da/dz is negative and vorticity decreases as the fluid moves 
downstream in the wake. The combined effects of transport, stretching and diffusion 
on vorticity distribution near the sphere can be appreciated in figure 16(b) and 
compared to the uniform situation in figure 16(a). The effect of the contraction of the 
streamlines at the rear of the sphere appears clearly: in the wake the isovorticity 
contours are deflected towards the symmetry axis. As a consequence the region of the 
flow containing significant vorticity is more confined near the sphere than in a uniform 
flow. 

4.3. Flow characteristics for  Ac < 0 
Following the sign of Ac, the vortex-stretching mechanism previously described leads 
to two different types of behaviour as already pointed out by Kang & Leal (1989) and 
Leal (1989) for the case V, = 0. In contrast with what happens when Ac is positive, in 
flows where Ac is negative (biaxial straining) (36) and (37) show that vorticity 
generated at the surface of the sphere increases along the streamlines and tends to 
become infinite along the stagnation plane z, = - 2 / A c .  At the same time streamlines 
coming from the ‘downstream’ boundary z ,  = zam do not carry any vorticity (see figure 
17) and reach the plane z ,  = - 2 / A c  with w = 0 (actually the plane is no longer exactly 
located at z, = - 2 / A c  in the presence of vorticity on one side because the continuity 
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FIGURE 18. The biaxial straining flow around a rigid sphere at two different times; Re, = 300, 
Ac = -0.2. (a) t = 1.21Ac-’I, (b) t = 2.41Ac-lI. 

of the pressure across the plane implies a slightly different location). A fundamental 
question concerns the matching between the two parts of the flow and the real 
possibility of observing such a flow. Clearly a large diffusion of vorticity across the 
plane z ,  = - 2/Ac is needed to maintain the compatibility between the two regions. Is 
viscous diffusion sufficiently efficient whatever Re, to ensure this matching? The 
computations carried out in the range 0.1 6 Re, < 300 with Ac = -0.2 and -0.1 lead 
to a steady solution only for relatively low values of Re,. For larger Re, the flow is 
found to be unstable and an unsteady solution develops. In such cases examination of 
the velocity and pressure fields after the onset of the instability shows that no numerical 
perturbation exists near the outer boundaries : the instability comes undoubtedly from 
the region of the stagnation plane. To ensure that the specific effects occurring in that 
region are correctly captured (especially those related to viscosity) the mesh has been 
stretched there, leading to the conclusion that the characteristics of the instability are 
mesh independent. 

Actually this instability is of Kelvin-Helmholtz type. Its basic mechanism can be 
summarized as follows. Owing to the enhancement of the vorticity by the vortex 
stretching mechanism a substantial amount of vorticity reaches the stagnation region. 
Thus in that region the velocities of the fluid elements coming from the sphere differ 
from those of the stream coming from the boundary z ,  = z ,  . In particular, compared 
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FIGURE 19. The vorticity field around a rigid sphere in the presence of a negative strain; 

Re, = 300, Ac = -0.2, t w 1.24; Aw = 1.0. 
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FIGURE 20. Stability domain of the axisymmetric straining flow around 
a sphere (qualitative diagram). 

to the potential flow (31 a, b) the radial velocities V,  are decreased by the positive 
vorticity generated at the surface of the sphere. Thus the tangential velocity (with 
respect to the stagnation plane) V,  experiences a jump across this plane (figure 17). 
Since o increases with so does the jump. This jump can be spread by viscosity at low 
values of Re,, but it leads necessarily to an instability beyond a critical value of Re,. 
After the onset of the instability the stagnation plane deforms in a wavy surface and 
perturbations develop on both sides in the velocity field. 

Figure 18 (a, b) depicts two stages of this unstable flow for the case of a rigid sphere. 
In figure 18(a) vorticity has not yet reached the stagnation region (this requires a non- 
dimensional time t ,  z 2)AcJ-l). Note that the separated region is already very well 
developed and that the centre of the vortex is located very high above the symmetry 
axis. In figure 18 (b) the instability has developed. The vortex now fills almost the entire 
wake up to z ,  = - 2/Ac and more than half of the sphere experiences a negative shear 
stress. The vortex oscillates and goes on growing above the sphere. In later stages 
secondary vortices are shed near the top of the sphere. Figure 19 shows the vorticity 
field corresponding to the velocity field of figure 18(a). The effect of the vortex- 
stretching mechanism is clearly illustrated by the isovorticity contours at the rear of the 
sphere. Owing to viscosity the vorticity produced at the surface first diffuses and 
decays. Then when vorticity begins to be advected downstream the vortex stretching 
starts to act and increases the vorticity in the near wake as shown by the occurrence 
of a local maximum. 

The stability domain of the flow can be determined by carrying out computations for 
a given negative value of Ac at several values of Re, and monitoring the evolution of 
velocity variations throughout the simulation. A qualitative map of this stability 
domain in the range 1 9 Re,, < 60 for both a rigid sphere and a bubble is shown in 
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figure 20: with Ac = -0.2 the flow becomes unsteady for Re,, > 10 while the limit is 
Re,, z 20 for Ac = -0.1. For a given value of Ac the instability occurs at nearly the 
same critical Reynolds number for both a rigid sphere and a bubble: near the 
stagnation plane the stabilizing effect of viscosity is basically governed by the potential 
flow (31 a, b) which is independent of the nature of the body and a small amount of 
vorticity in that region is sufficient to destabilize the flow whatever its origin. 

It is interesting to note that in the present situation the physical behaviour of the flow 
near the stagnation plane is completely different from that described by Kang & Leal 
(1989). Those authors examined a symmetric biaxial straining flow in which the 
stagnation plane is necessarily located at z,  = 0. In that case vorticity comes from both 
sides of the plane with opposite signs. Since symmetry on that plane is enforced by 
imposing w = 0 and computing only half of the flow no instability can occur on the 
position of the stagnation surface. Thus the question solved by Kang & Leal (1989) is 
that of the matching between a non-zero vorticity growing with cr near z ,  = 0 and the 
condition w = 0 on the plane itself. The authors showed by a boundary layer analysis 
that the large gradient of vorticity along the direction z ,  normal to the symmetry plane, 
enables viscosity to match a steady solution to the symmetry condition whatever the 
Reynolds number. This striking difference with the situation described by the present 
computations highlights the sensitivity of the biaxial straining flow to asymmetric 
conditions. 

The limited extent of the stability domain shown in figure 20 implies apviori that the 
applicability of steady results obtained for the hydrodynamic force in diverging flows 
is reduced to a narrow range of values of Re,,. Nevertheless, whatever its fundamental 
interest the situation examined here is rather academic : in real configurations, 
diverging (or converging) flows are generally encountered over regions of limited extent 
and no general reversal of the flow is observed since the fluid is blown along a given 
direction, the diverging or converging effect being obtained by a suitable form of the 
walls. In such cases the instability previously discussed does not appear (however the 
flow is certainly less stable than its uniform counterpart). Such a configuration involves 
a new parameter, namely the ratio h between the sphere radius and the distance from 
the centre of the sphere to the downstream end of the diverging region. If h is small, 
one can expect the flow near the sphere and hence the hydrodynamic force to be nearly 
independent of A. Some results of present computations can be used as an 
approximation of the hydrodynamic force in a real steady diverging flow with small h 
in the following way. As previously mentioned, instability occurs in the biaxial 
straining flow after vorticity has reached the stagnation plane, i.e. for t > t,. In the 
present computations the stagnation plane lies between 10 and 20 radii downstream of 
the sphere. If viscous effects around the sphere extend over a characteristic length S 
these effects reach a steady state within a time t ,  z S 2 / v .  If S/D 4 1 the time ti is 
sufficient to enable the flow to reach nearly its steady state. In the present study this 
is indeed the case for the bubble, owing to the values of the various parameters. Values 
of the drag parameters recorded at t = ti just before the instability occurs can thus be 
considered as a good estimate of their value in a really steady diverging flow 
corresponding to a small A. For that reason these values will be termed hereafter 
‘nearly steady’ values. In contrast for the rigid sphere S/D = O(1) and the separated 
region has not time to develop completely. Thus in that case no complete conclusion 
can be drawn from the value of the drag coefficients at t = ti and such values will be 
termed ‘ non-developed ’. 

As can be expected the effects of the deceleration (Ac < 0) on the flow near the 
sphere are qualitatively opposite to those found with Ac > 0. The vorticity at the 
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FIGURE 21. Evolution of the total drag coefficient with Reynolds number in a straining flow. (a) Rigid 
sphere (no fitting is proposed for Ac < 0 since the values of C, do not correspond to a steady state), 
(b) Inviscid bubble: ., Ac = 0.2; 0, Ac = 0.1; +, Ac = 0 ;  0, Ac = -0.1; A, Ac = -0.2. 

surface increases on the fore half of the sphere and decreases on the rear half (figures 
14a, b and 15a, b). In the case of the rigid sphere, even if no steady state is reached, 
it is obvious that the separation angle is strongly reduced while the reattachment length 
increases dramatically (figure 18 a). Furthermore the deceleration severely reduces the 
critical Reynolds number at which separation occurs: the flow separates at Re, = 7.8 
for Ac = -0.1 and at Re, = 3.3 for Ac = -0.2! 

4.4. The total drag 
The results concerning the drag force are expressed within the form of generalized drag 
coefficients C,, C,, and C,, defined according to (27) and (28) by replacing V ,  by 
V(0,O) = V, e,. The evolution of C, and C,, with Re, and Ac is shown for Re, 2 10 
in figures 21 (a, b) and 22(a, b) respectively. At low Reynolds numbers the influence of 
Ac is weaker: at Re, = 0.1, C, changes by less than 4 %  for lAcl = 0.2. This is the 
reason why the evolution of the coefficients is not shown for Re,, < 10. Nevertheless the 
values of C, and C,, obtained in the whole range 0.1 < Re, < 300 are reported in 
tables 3 and 4. At moderate and high Reynolds numbers the two coefficients C, and 
C,, experience considerable variations with Ac. In particular it is interesting to notice 
that in a diverging flow with Ac = - 0.2 (resp. - 0.1) the nearly steady drag obtained 
for a bubble at Re, 2 100 (resp. b 200) is negative, meaning that the total drag is in the 
direction opposite to the flow. This emphasizes the dominant role of pressure effects 
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2 -  (a) 

Re 0.1 

0.1 250.00 
( 1 69.1 6) 

0.2 254.14 
( 17 1 38) 

-0.1 237.66 
(160.86) 

-0.2 233.97 
(1 58.56) 

Ac 

1.5 

1.0 

0 -  

-0.5 

1 10 100 

- (b) cpD0.5:y 
' 1 

28.78 4.750 1.387 
(19.35) (2.997) (0.689) 
30.10 5.182 1.655 

(20.1 5) (3.189) (0.755) 
24.18 3.972 0.853ND 

(16.40) (2.667) (0.323)ND 
22.65 3.649 0.557ND 

(1 5.44) (2.542) (0.416)ND 

ND: non-developed state. 

200 

1.057 
(0.446) 
1.304 

(0.498) 
0.497ND 

(0.285)ND 
0.366ND 

(0.252)ND 

300 

0.924 
(0.346) 
1.189 

(0.399) 
0.406ND 

(0.209)ND 
0.272ND 

(0.173)"" 

TABLE 3. Generalized drag coefficient C, of a rigid sphere in a straining flow (the number in 
parentheses indicates the generalized friction drag coefficient CvD) 

related to Ac on the total drag as the Reynolds number increases. To analyse more 
precisely the influence of Ac it is necessary to consider separately viscous and pressure 
contributions: since the theoretical result given by (1) was derived for inviscid flows, 
the corresponding effects must be contained in CpD. In other words if the only effect 
of the strain rate were to induce the inertia force given by (1) the results should be 

b) Cv,(Reo, Ac) = CvD(Reo, 01, CpD(Reo, Ac) = Cp,(Reo, 0) + + ( I +  C,) Ac, 
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FIGURE 23. Influence of the strain on the surface pressure. Re,, = 1. (The reference pressure is defined 
at a different location for each Ac so that the values of P, have comparable magnitude). (a) Rigid 
sphere, (b) inviscid bubble: ., Ac = 0.2; 0, Ac = 0 ;  +, Ac = -0.2. 

Re 0.1 1 10 100 200 300 

Ac 
0.1 163.58 

(104.73) 
0.2 165.41 

(105.81) 
-0.1 155.73 

(10 1.83) 
- 0.2 154.10 

(100.84) 

18.07 
(1 1.46) 
18.66 

(1 1.75) 
16.19 

(10.75) 
15.76 

(10.43) 

2.657 
(1.609) 
2.880 

(1.641) 
2.230 

(1.548) 
2.035 

(1.523) 

0.565 
(0.230) 
0.762 

(0.235) 
0.1 50NS 

(0.219)Ns 
- 0.075NS 

(0.210)NS 

0.396 
(0.124) 
0.589 

(0.125) 

(0.121)"s 

(0.1 1 8)NS 

- 0.006NS 

- 0.225NS 

0.335 
(0.086) 
0.530 

(0.087) 

(0.085)NS 

(0.084)NS 

-0.063NS 

- 0.27SNS 

Ns: nearly steady state. 

TABLE 4. Generalized drag coefficient C, of an inviscid spherical bubble in a straining flow (the 
number in parentheses indicates the generalized friction drag coefficient C,,,) 

where C,,(Re,, 0) and C,,(Re,, 0) stand for the viscous and pressure drag coefficients 
found in uniform flow at the same Reynolds number Re,. Expressions (38) suggest 
expanding linearly the various coefficients with respect to Ac with the aid of a least- 
square fit. Naturally from the point of view of accuracy such an expansion is realistic 
only if Ac is not too small compared to CpD. Furthermore this procedure is not fully 
satisfactory since it has been shown previously that according to the sign of Ac the flows 
exhibit some markedly different properties. Such an overall method cannot account for 



128 J .  Magnaudet, M .  Rivero and J .  Fabre 

2.0 - 

1.5 - 

P, 
- 

0.5 - 

120 150 180 
+--- 

-0.5 I e 

FIGURE 24. As figure 23 but for Re, = 300. In (b) influence of Ac (potential theory): 
-, Ac = 0.2; ---, AC = -0.2. 

all the effects linked to the distribution of vorticity but it provides the only way to 
obtain the general tendencies of the evolution of the drag coefficients. For Re, 2 10 this 
method works well and an accurate fitting of the steady or ‘nearly steady’ results is 
given by 

(39 a) 

(39b) 

(40 a) 

(40 b) 

for the inviscid bubble. These results differ significantly from the behaviour depicted by 
(38 a, b). The reason for this is that the strain induces not only an inertia force but also 
a modification of the viscous drag which is a direct consequence of the changes found 
in the vorticity distribution. 

CpD(Reo, AC) = (1 + 0 . 1 7 4  C,,(Re,, 0) + 1.96Ac, 

C,,(Re,, Ac) = (1 + 0 . 3 5 4  C,,(Re,, 0) + 0.57Ac, 

CpD(Reo, AC) = (1 - 0.25Ac) CpD(Re,, 0) + 2.04& 

C,,(Re,, AC) = (1 + 0.19Ac) C,,(Re,, 0) 

for the rigid sphere, and 

4.5. The pressure drag and the inertia force 
As shown before the distribution of pressure imposed by the straining flow plays a 
central role in the drag experienced by the sphere. This role is easily seen in figures 
23(a, b) and 24(a, b) which present the distribution of the surface pressure P, for 
Re, = 1 and 300 respectively at various values of A c :  the acceleration induced by 
the strain results in an asymmetry of the surface pressure with respect to the plane 
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0 = in and thus contributes to the total drag. At high Reynolds number the pressure 
distribution on the inviscid bubble can be explained by looking at the potential solution. 
Using the velocity potential (34), the Bernoulli equation gives the pressure distribution 
at the surface of the sphere as 

Pa(ra = 1,O) = -~sin20+~(3AcsinO-&4c2sin20)sin20+const. (41) 

The first term on the right-hand side in (41) is the pressure distribution in uniform flow 
plotted in figure 8(c). The two last terms represent the contribution of the acceleration 
induced by the strain and are plotted in figure 24(b) using the same reference pressures 
as for P,. The second term results in both the added mass force and the buoyancy force 
induced by the pressure gradient of the undisturbed straining flow and thus leads to the 
last term of (38b). Figure 24(b) suggests that (41) describes accurately the evolution of 
the pressure at the surface of the bubble. The situation for the rigid sphere appears 
much more complex. Figure 24(a) shows that on the front half P, experiences an 
important shift which cannot be explained by (41): a large part of this shift results from 
the distribution of vorticity imposed by the strain. On the rear half the presence of the 
recirculating zone reduces the variations of P, but in the case Ac = 0.2 the evolution of 
P, follows roughly the same tendencies as the potential solution (the case Ac = - 0.2 is 
not fully developed and the evolution of P, on the rear half of the sphere reflects this 
situation). At low Reynolds number (see figure 23a, b) the strain also results in an 
additional asymmetry of P, which has the same form for both a rigid sphere and an 
inviscid bubble. However, as could be expected, this asymmetry does not follow (41). 

We turn now to the determination of the added mass coefficient. Identifying the last 
term of correlations (39a) and (40a) with the term $(1+ C,) Ac of (38b) gives the 
approximate values C, = 0.47 and C, = 0.53 for the rigid sphere and the inviscid 
bubble respectively. Since the overall relative accuracy of the calculations can be 
estimated to 0.5 % and since in the present situations added mass represents between 
1.5 YO and 11 Yo of the total force for the rigid sphere (between 2.7 YO and 25 % for the 
bubble), the accuracy of C, is not very high (it can be estimated approximately as 8 YO 
and 4 %  for the rigid sphere and the bubble respectively). Taking into account these 
limitations the two values previously mentioned appear remarkably close to the 
theoretical result C, = i. It can thus be concluded from these results that (1) with 
C, = i holds for viscous flows. These conclusions prove the concept of added mass to 
be relevant for non-uniform viscous flows and confirm unambiguously that the added 
mass force involves the acceleration of the fluid D V/Dt : if instead of D V/Dt the added 
mass involved the derivative of V following the sphere, i.e. d V/dt = a V/at + Vp.  V V 
we should get no added mass effect in present computations since V, = 0. Furthermore 
the present results, which have been obtained using values of Ac frequently encountered 
in real situations, show quantitatively that at moderate or high Reynolds numbers 
trajectories of bubbles or rigid particles embedded in non-uniform flows (and especially 
in turbulent flows) cannot be accurately determined without taking into account the 
inertia force caused by the spatial acceleration V .  V V.  

4.6. The viscous drag 

Let us now consider the second effect of the strain shown by previous results, namely 
the modification of the viscous drag (including the part of C,, due to viscosity). 
Vorticity at the surface of a rigid sphere is an O(Re1I2) quantity whereas it is O(1) for 
an inviscid bubble. One can thus expect the influence of Ac on the total drag via viscous 
effects to be much weaker for the inviscid bubble than for the rigid sphere. This is 
confirmed by comparing correlations (39 b) and (40b). Moreover correlations (40a, b) 
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show that for a bubble Ac tends to increase C,, and to decrease C,, by nearly the same 
amount. This results in a small effect on the global drag coefficient C, which never 
goes beyond 1.5 YO in our simulations. These conclusions for the inviscid bubble agree 
qualitatively with those that can be drawn from the velocity potential (34). Equation 
(35) shows how the vorticity at the surface of the sphere is modified by the strain when 
the Reynolds number is large. It can be proved that the supplementary term results in 
an even contribution to surface pressure distribution and thus does not modify C,, 
(see Kang & Leal 1988 for the determination of surface pressure from vorticity). A 
similar result can be obtained for the normal stress contribution derived from (34). At 
leading order in Re-' it yields 

T"(Y, = 1,d) = (4/ Re) { - 6 cos 8 + gAc( 1 + 3 cos 28)). (42) 

The additional term appearing in (42) is even, so that C,,(Re,, Ac) = C,.,(Re,, 0). 
Thus, at very high Reynolds number, asymptotic theory shows that an inviscid bubble 
does not undergo any viscous modification due to the strain. This conclusion can be 
qualitatively extended to lower Reynolds numbers since the form of the distributions 
of surface vorticity and normal stress remains nearly the same whatever Re. 
Consequently in the case of a bubble it is likely that only minor modifications of the 
viscous drag will be found within the nearly the whole range of Re (the most significant 
change is found at the intermediate value Re, = 10 where the vorticity at the surface 
exhibits the maximal asymmetry as shown by figure 6a). 

Conclusions concerning the rigid sphere are markedly different. The values reported 
in table 3 as well as the correlation (39 b) show that C,, is strongly influenced by the 
strain when Re, 2 10. This can be related to the evolution of the shape of the surface 
vorticity distribution : at low Reynolds number this distribution is nearly symmetric, 
like that corresponding to the inviscid bubble, and only a small effect of Ac on C,, is 
observed. Asymmetry increases with Re and the modification of surface vorticity by the 
strain is very different from the behaviour depicted by (35) and results in a much more 
significant effect. Correlation (39b) obtained for Re, 2 10 shows a severe modification 
of the viscous drag by the strain related in particular to the changes of size of the 
separated region. A contribution 0.57Ac which has the form of an inertial term appear 
in (39b) and traduces an important variation of C,, with Ac.  Since the term 0.57Ac 
has been obtained through a fitting procedure limited to Re d 300 it cannot be 
concluded that it represents really an effect of inertia and still exists at very high values 
of Re where viscous effects become asymptotically small. Present results just show that 
the modification of the viscous drag of a rigid sphere by the strain cannot be ignored 
at Reynolds numbers of several hundreds : in our simulations the variation of the total 
drag coefficient C, linked to this effect goes from 4 %  at Re, = 0.1 to 22% at Re, = 
300 for Ac = 0.2. 

The contribution 0.57Ac found in the correlation (39b) has the same order of 
magnitude as that linked to the added mass force (0.667Ac). Thus both must be taken 
into account in practical calculations of particles trajectories. However, it must be 
stressed that the nature of the two effects is fundamentally different and that no 
conclusion can be drawn from the term 0.57Ac concerning the evolution of C,, with 
Ac for values of Re, larger than those explored in the present simulations. It is 
unfortunately not possible to develop general analytical expressions for the 
modification of the viscous drag produced by the strain. For practical calculations it 
is highly desirable to get correlations giving directly the drag coefficient C,, taking 
into account this effect (without any splitting between viscous and pressure 
contributions) in terms of the drag coefficient in uniform flow. Since (1) was shown to 
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be valid for viscous flows, the total force experienced by a spherical particle at rest in 
a steady straining flow can be expressed as 

(43) F = +C,,(Re,, Ac) 7~D’pl VI V + p V (  1 + C,) V -  V V. 

Keeping in mind that the averaged error on the drag coefficients can be estimated as 
0.01 (i.e. 0.05Ac when IAcJ = 0.2) the results reported in tables 1 4  lead to the following 
approximate relations between C,, and C, for 10 < Re, < 300: 

C,,(Re,, Ac) = (1 + 0.25Ac) C,(Re,, 0) + 0.55Ac for the rigid sphere, (44a) 

CD,(Re,, Ac) = C,(Re,, 0) for the inviscid bubble. (44 b) 

4.7. The history force in non-uniformJlows 

We have previously shown that computing the flow around a fixed sphere embedded 
in a pure straining flow allows one to find the correct generalization of the time 
derivative aV/at which must be used in the expression for the added mass force for 
non-uniform flows: this generalization is the acceleration of the fluid, i.e. DV/Dt = 
a V/at + V .  V V, and not the derivative of V following the particle, i.e. dV/dt = 
a V/at + V,. V V. A similar unsolved question exists concerning the history force. 
Unfortunately it cannot be answered by considering either inviscid flows (since no 
history force exists in this case) or creeping flows since DV/Dt and dV/dt are 
indistinguishable for Re 4 1 (Maxey & Riley 1983). Drew & Wallis (1992) suggested 
a solution by assuming that the history force must be frame indifferent. When the 
unperturbed flow is irrotational their argument leads to choosing D V/Dt as the correct 
generalization. The steady straining flow considered here suggests a very simple way to 
check the various proposals and finally get the right expression on purely physical 
grounds. 

Let us suppose that the history force experienced by a rigid sphere be given in 
uniform flow by the classical expression found by Boussinesq (1 885) and Basset (1 888) : 

Let us now suppose that the correct generalization for non-uniform flows of the 
term aV/ar = {a V/at>,=, be {D V/Dt)t=T,x~xo(T,, x, standing for the instantaneous 
position of the centre of the sphere. The history force experienced by a sphere at 
rest in the straining flow defined by (314 b) can then be obtained by evaluating 
(45) on replacing aV/ar by {DV/Dt),=,,,=xo,,,,. The result is a non-zero force FH = 

3aV, D2(xpp(t - e,. This is evidently not correct: time plays no role in a situation 
where the flow is steady and the body does not move. Consequently the history force is 
necessarily zero. It can be concluded from this conflict that no term of the form V .  V V 
can be involved in the proper generalization of aV/ar. In contrast, since V, = 0, a 
generalization involving the derivative of V following the sphere {d V/dt)t=,,x=,o(T, leads 
to the correct result FH = 0. This proposal is the unique correct answer to the problem 
as can be demonstrated by considering the same physical situation in a frame of 
reference 9‘ moving with an arbitrary constant velocity c = ce,. In 9‘ the coordinates 
transform as x’ = x - cte,, t‘ = t and the unperturbed streamwise fluid velocity corres- 
ponding to (3 1 a) is given by Vi(z’, t’) = V, - c + a(z’ + ct’). Thus in 9‘ the flow is no 
longer steady and we get a‘ V‘lat‘ = ace, = c. V’ V‘ (a’lat’ and V‘ denoting the operators 
evaluated in 9’). It is well known from the principle of Galilean invariance that the 
history force, like the other forces, must remain the same in any Galilean frame of 
reference. Consequently, to maintain FH = 0 in 99‘ the correct generalization of a V/ar 
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written in 9’ must be in the present case { a ’ v . / a t ’ - ~ . V ’ ~ } , = , , ~ = ~ , ( ~ ) .  Since V ,  = 0 
this is nothing other than {d’ V‘/dt’},=,,X=XO(T). So by combining a physical situation 
where d V/dt = 0 while D V/Dt + 0 with the principle of Galilean invariance we have 
demonstrated that {d V/dt},=7,X=XO(T) is the proper generalization of a V/a7 to be used 
for the history force in non-uniform flows. Note that if we now consider the case where 
the sphere moves with a constant velocity V ,  = VPe, in the same straining flow we 
get, using {d V/dt},=r,x=xo(r) in place of a V/a7 in (45) : FH = 3aVp D2(n,up(t - to))1/2ez. 
The existence of a non-zero history force in that case is not unlikely since as the sphere 
moves it sees a varying fluid velocity. 

From the foregoing discussion we can conclude that the correct generalization of 
a V/at to be used in non-uniform flows is not the same in the added mass term and in 
the history force : added mass involves the acceleration of the fluid while history force 
involves the derivative of the fluid velocity following the particle. Furthermore this 
discussion shows that use of the principle of frame indifference to determine the list of 
vectorial or tensorial arguments which can enter into the expression of the various 
hydrodynamic forces (Drew & Lahey 1979; Drew & Wallis 1992) leads in the present 
case to erroneous conclusions. Thus we may conclude that frame indifference cannot 
be retained as a general guiding principle as soon as inertia effects (i.e. non-zero relative 
Reynolds numbers) are considered. 

5. Conclusions 
In this paper we have reported some results of a numerical investigation of two 

steady axisymmetric flows around a sphere, namely the uniform flow and the pure 
straining flow. The numerical code developed for this study uses a velocity-pressure 
formulation combined with a finite-volume discretization of the Navier-Stokes 
equations written in general orthogonal coordinates. Computations have been carried 
out in the range 0.1 6 Re < 300 in order to cover roughly all the laminar regime. Since 
we are interested in both particle-laden and bubbly flows a systematic comparison 
between flows around a rigid sphere and those around an inviscid spherical bubble has 
been pursued. The study of the pure straining flow has yielded several important 
results : 

(i) The presence of the strain modifies deeply the distribution of vorticity around the 
sphere. This modification originates in two different mechanisms. On the one hand, 
compared to uniform flow, the viscous boundary condition (no-slip or shear-free) that 
must be satisfied by the straining flow on the sphere induces an additional contribution 
to surface vorticity. On the other hand the streamlines of the basic flow are curved and 
force the vorticity field to follow a specific spatial distribution. 

(ii) These modifications have no spectacular consequences in the case of an inviscid 
bubble since no separation occurs. In contrast the characteristics of the flow near the 
rigid sphere are greatly modified: in the case of a positive strain the recirculating region 
first appears at a higher value of Re, than in uniform flow. Moreover the separation 
angle and the reattachment length are strongly reduced. 

(iii) A specific vortex-stretching mechanism due to the combination of axisymmetry 
and straining exists in this type of flow. When Ac is positive this mechanism acts to 
reduce the extent of the region where vorticity is significant. In contrast when Ac is 
negative the same mechanism leads (in the inviscid limit) to a discontinuity of both the 
velocity and the vorticity across the stagnation plane. This specific feature provides the 
basis of an instability of the steady biaxial straining flow which occurs for each value 
of Ac when Re, increases beyond a critical value. 
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(iv) Computations of the total drag force have shown that the sphere undergoes an 
added mass force in this purely steady situation with the sphere at rest. This proves 
that the concept of added mass holds for viscous non-uniform flows and that the added 
mass force involves the acceleration of the fluid D V/Dt .  Furthermore our results show 
that the added mass coefficient remains the same as in inviscid flow or in creeping flow, 
i.e. C, = f, whatever the Reynolds number in the range covered by the present 
computations. 

(v) Changes found in vorticity distribution are reflected in the viscous drag: 
compared to uniform flow the viscous drag is increased by a positive strain and 
decreased by a negative one. For the inviscid bubble the overall effect is a small 
modification which can generally be ignored in practical calculations. In contrast, for 
the rigid sphere the effect increases with Re, and goes beyond 10% for Re, 2 100. 

(vi) Finally, physical reasoning has shown that in non-uniform flows, the time 
derivative of the fluid velocity V involved by the history force must be generalized by 
using the derivative of V following the particle. 

We thank D. Legendre for improving numerous computations discussed in this 
paper and providing several new results. Computations have been carried out on the 
IMB 3090/600VF of the Centre National Universitaire Sud de Calcul in Montpellier 
with the support of the ‘Centre de CompCtences en Calcul NumCrique Intensif’. 
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